对勾函数的最小值

【对勾函数的最小值】对勾函数的最小值求法:对于f(x)=x+a/x这样的形式(“√a”就是“根号下a”)当x>0时,有最小值,为f(√a)当x=2√ab[a,b都不为负])比如:当x>0是f(x)有最小值 , 由均值定理得:x+a/x>=2√(x*a/x)=2√a故f(x)的最小值为2√a 。
对勾函数是一种类似于反比例函数的一般双曲函数,由图像得名 , 又被称为“双勾函数”、“勾函数”、“对号函数”、“双飞燕函数”等 。常见a=b=1 。
定义域为(-∞ , 0)∪(0,+∞)值域为(-∞ , -2√ab]∪[2√ab,+∞)当x>0,有x=根号b/根号a,有最小值是2√ab当x

对勾函数的最小值的详细内容就为您分享到这里,【精彩生活】jing111.com小编为您精选以下内容,希望对您有所帮助: