【如何正确地理解贝特朗悖论】1899年,法国学者贝特朗提出了贝特朗悖论,矛头直指几何概率概念本身:在一给定圆内所有的弦中任选一条弦,求该弦的长度长于圆的内接正三角形边长的概率 。
悖论分析:
由于对称性,可预先固定弦的一端 。仅当弦与过此端点的切线的交角在60度到120度之间,其长才合乎要求 。所有方向是等可能的,则所求概率为三分之一。此时假定端点在圆周上均匀分布;由于对称性,可预先指定弦的方向 。作垂直于此方向的直径 , 只有交直径于四分之一点与四分之三点间的弦,其长才大于内接正三角形边长 。所有交点是等可能的,则所求概率为二分之一 。此时假定弦的中心在直径上均匀分布;弦被其中点位置唯一确定 。只有当弦的中点落在半径缩小了一半的同心圆内,其长才合乎要求 。中点位置都是等可能的,则所求概率为四分之一 。此时假定弦长被其中心唯一确定 。这导致同一事件有不同概率,因此为悖论 。
如何正确地理解贝特朗悖论的详细内容就为您分享到这里,【精彩生活】jing111.com小编为您精选以下内容,希望对您有所帮助:
- 苹果12pro怎么设置面容 如何设置面容
- 钉钉如何设置自动打卡
- KEEP如何参与基础运动
- 教你如何删除顽固软件
- 甘蔗如何挑选 绿皮甘蔗和紫皮甘蔗的区别
- 和平精英怎么卖号
- 如何煎出漂亮的荷包蛋
- 椒麻鸭如何做
- 如何查看知乎的收费文章
- 电影票网上如何购买