1、任意正多边形的外角和=360° 。
2、正多边形任意两条相邻边连线所构成的三角形是等腰三角形 。
3、多边形的内角和定义:〔n-2〕×180°(n为边数) 。
【多边形的内角和】4、多边形内角和定理证明:在n边形内任取一点O,连结O与各个顶点,把n边形分成n个三角形 。因为这n个三角形的内角的和等于n·180° , 以O为公共顶点的n个角的和是360°所以n边形的内角和是n·180°-2×180°=(n-2)·180°.(n为边数),即n边形的内角和等于(n-2)×180°.(n为边数) 。
多边形的内角和的详细内容就为您分享到这里,【精彩生活】jing111.com小编为您精选以下内容,希望对您有所帮助:
- 千纸鹤折纸教程
- 等边三角形的三个角都是什么
- 三角形的重心有什么性质
- 哪些suv车型的空调出风口是圆形的
- 长方形面积怎么算
- 窗户密封条老化怎么换
- 正方形的棱长是什么
- 垂心是什么的交点
- 中秋节手抄画怎么画
- 直角等腰三角形的面积怎么求