LabVIEW实现USB数据通信方案设计介绍【图文】

【LabVIEW实现USB数据通信方案设计介绍【图文】】1 引言
LabVIEW 是一种基于图形程序的虚拟仪器编程语言,在测试与测量、数据采集、仪器控制、数字信号分析、工厂自动化等领域获得了广泛的应用 。LabVIEW程序采用方框图编程 , 具有友好的人机界面,在前面板中有用于模拟真实仪器面板的控件可供调用,可用于设置输入数值、观察输出值以及实现图表、文本等显示 。传统的用LabVIEW读写USB设备的方法是:先用VC或Delphi编写动态链接库DLL文件,在DLL中通过调用WIN API函数读写USB设备的数据,并存在缓冲区中,在LabVIEW中通过对DLL文件的调用提取缓冲区中的数据 。介绍了在LabVIEW下,通过调用NI-VISA子程序控件 , 实现与USB设备的直接通信,避免了二次编程的麻烦和数据的中转 。
2 USB底层驱动程序设计
USB底层驱动开发工具有Windows DDK和第三方开发工具,如Driver studio和 Win driver等,但是使用这些工具开发驱动难度大、效率底 。在这里,介绍如何借用LabVIEW的NI-VISA子程序控件作为USB的底层驱动 。
VISA(Virtual Instrument Software Architecture,ni.corn/visa)是一个用来与各种仪器总线进行通讯的高级应用编程接口(API) 。他不受平台、总线和环境的限制 。通用串行总线(USB)是一个基于信息的通讯总线 。这表示PC机与USB设备通过发送指令和数据进行通讯,而这些指令和数据是通过总线以文本或二进制数据的形式发送的 。每个USB设备都有各自的指令集 。可以使用NI-VISA的读写功能向仪器发送这些指令 , 并读取仪器的反馈 。
NI-VISA从3.0版开始支持USB通讯,他有2种VISA类函数(Resource Class),可以控制2类USB设备:USB INSTR设备与USB RAW设备 。符合USB测试和测量类(USBTMC)协议的USB设备可以通过使用USB INSTR类函数控制 , 他们使用488.2标准通讯 。对于这些设备,只需以与GPIB仪器通讯同样的方式,使用VISA Open , VISA Close,VISA Read和VISAWrite功能 。USBTMC设备符合VISA USB INSTR类函数能够理解的协议 。USBTMC设备相对来说控制较为复杂 , 因为每个设备可以使用各自的通信协议,而这些通信协议一般都是由设备的生产厂家自定的 。
为了使用NI-VISA,必须先让Windows将NI-VI-SA作为设备的缺省驱动程序使用 。在Windows环境中,可以通过INF文档做到这一点 。INF文件是系统硬件设备配置文件,USB驱动程序通过INF文件中的PID(产品识别号)和VID(厂商识别号)识别USB设备 。NI-VISA 3.0中包含的VISA Driver Development Wizard(DDW)可以为USB设备创建一个INF文档 。下面简单介绍创建INF文档的过程:
(1)在安装了NI-VISA后,启动VISA Driver Devel-opment Wizard程序,出现了为PXI/PCI或USB设备创建一个INF文档的向导,选择USB设备 , 点NEXT,出现VI-SA DDW基本设备信息窗口 。
(2)进行这一步时 , 需要清楚USB的PID和VID 。这些数字可以在安装USB设备的时候对其进行确认,并在想要与设备通讯的时候 , 寻找他的地址 。依据USB的规格,两个数字都是16位16进制数字,并应该由设备制造商提供 。例如在后面介绍基于USB的虚拟示波器用到USB接口芯片PDIUSBD12的PID和VID分别是0x0471和0x0666;这一步设置完成后,点击NEXT,进行最后一步的设置 。
(3)USB Instrument Prefix(USB仪器前缀)只是一个描述符,可以用他来识别本设备所用的相关文档 。在USB Instrument Prefix中输入相应信息,并在output file directory中选择存放这些文档的目录,然后点击Finish 。INF文档就被建好并保存至指定的位置 。
这时候,只要复制生成的INF文件夹到系统盘Win-dows文件夹下INF文件夹,点击右键,安装即可 。这时,插上USB设备,Windows系统就能探测到,并根据INF硬件配置文件选择NI-VISA作为底层驱动程序 。在Lab-VIEW中,只需调用NI-VISA的相关控件,即可实现对USB设备的读写操作 。
3 LabVIEW驱动程序编写
强大、灵活的仪器控制功能是LabVIEW区别于其他编程语言的主要特点 。LabVIEW不仅提供数百种不同接口测试仪器的驱动程序,而且还支持VISA,SCPI和IVI等最新的程控软件标准,为用户设计开发先进的测试系统提供了软件支持 。VISA是用于仪器编程的标准I/O函数库及相关规范的总称,一般称之为VISA库 。VISA库驻留于计算机系统中,是计算机与仪器之间的软件层连接,用以实现对仪器的程控 。对软件开发者来说,他是一个可调用的操作函数集 , 他本身不提供仪器编程能力,只是一个高层API(应用程序接口) , 通过调用底层的驱动程序来控制仪器设备 。
NI-VISA支持3种类型的USB管道:控制、批量和中断 。NI-VISA探测到USB仪器时,他会对仪器进行自动扫描 , 寻找各种类型的最低可用端点 。如使用NI-VI-SA中的VISA USB Control In和VISA USB Control Out来通过控制型管道传输数据,使用VISA Read和VISAWrite来通过批量型管道传输数据 。
作为仪器I/O函数库,VISA编程与传统的I/O软件编程基本相同 , 主要通过设备I/O端口的读写操作和属性控制,实现与仪器的命令与数据交换 。LabVIEW中所有的VISA节点均在Function模板All Functions子模板Instrument I/O子模板VISA子模板中 。在这里,只用到了VISA Open , VISA Close,VISA Write和VISARead四个节点即可实现和USB设备的双向通信 。当完成对USB设备的INF硬件配置后,就可以用VISA Open节点打开该资源 , 建立计算机与这些VISA资源的通信管道;与VISA Open节点相反,VISA Close节点用于将打开的VISA资源关闭;VISA Write节点的功能是将writebuffer端口输入字符串数据发送到仪器中;VISA Read节点的功能是从仪器中读出数据;
介绍完上面的4个节点,就可以用上面4个节点实现LabVIEW对USB批量数据收发,如图1所示 。当然,这需要前述INF文件的支持和与USB接口的单片机程序的支持,在图1中VISA resource name端口用于指定需要打开的VISA资源的名称,实际上就是前面生成INF配置文件中的VISA资源仪器描述符 。这里,向USB发送字符串connect test,连接测试,单片机通过USB接口芯片将发送过去的数据回传给LabVIEW 。在前面板的read buffer显示框中能显示出connect test字符串 。
4 基于IJSB的虚拟示波器的实现
本系统为在LabVIEW中实现示波器的功能 。单片机对向USB示波器调理电路输出的信号进行96 k(多档可调)的高速连续AD采样 , 并将采样到的数据通过USB口传给PC机的LabVIEW,LabVlEW对USB口传来的数据进行处理、测量、波形还原和显示等相关操作 。虚拟示波器的程序运行界面如图2所示,当前输入的是2.001 kHz的正弦波信号,在软件中显示的波形以及测量结果与实际示波器上 得到的结果基本无异 。在该程序模块中 , 通过调用Lab-VIEW的相关控件,实现了对输入的模拟信号的波形还原显示、频率测量、峰值测量、直流漂移测量等操作 。
系统采用单片机和Philip公司生产的PDIUSBD12芯片构成USB设备 。由单片机实现AD采样,经USB接口完成采样数据的传输 。单片机的电路设计和软件构成在这里就不做详细介绍 。
此系统硬件部分USB接口芯片采用的PDIUSBD12,他支持批量数据的长度为64B,所以就以64B为一帧进行数据和命令的收发 。在系统启动即检测USB设备是否连接正常,正常才启动检测,否则提示连接不正常 。当启动检测时,USB总线上的数据的传输过程遵循以下步骤:
(1)LabVIEW向USB设备发送启动控制命令帧 , 其中包含采样频率、存贮深度、持续时间等相关内容 。由于控制命令字不满64B,其他部分进行比特填充 。
(2)单片机通过USB接口芯片接收到控制命令,即按要求开始启动采样 。若为大于8k高速采样命令 , 则进行连续采样,将采样的数据存贮在数据缓冲区中,采样结束后,将数据缓冲区中的数据进行60B每帧的拆分,并在60B数据的前面加上4个字节的数据帧编号等相关内容,通过USB总线将这些数据帧批量传输给LabVIEW 。
(3)若为小于8k的低速采样命令,则进行中断采样,将采样的数据存储在一个队列中,在采样过程中,若采样的数据多于60B,即在主程序中取出队列中60个字节数据并封装成数据?。舳疷SB数据的传输过程 。采样过程直至LabVIEW向USB设备发送停止命令帧 。
(4)在一次数据采样结束后,LabVIEW向USB设备发送启动控制命令帧即可马上进行再次采样 。
5 结语
用户可以根据不同的环境和要求选择不同的通信方式,在低速的情况下可以采用串口,并口等方式,高速数据采集可以采用USB口,专用数据采集卡等,使用USB2.0协议的芯片支持的批量的数据帧长度可以达到512B,并且有更高的数据传输速度 。介绍了在LabVIEW中实现USB通信的设计方法 , 并给出具体的设计步骤和方框图程序 。该方法具有硬件接口简单、软件编程方便、实用的特点,在实际数据采集过程中具有一定参考价值 。

LabVIEW实现USB数据通信方案设计介绍【图文】的详细内容就为您分享到这里,【精彩生活】jing111.com小编为您精选以下内容,希望对您有所帮助: